Abdul Azis Abdillah - Matematika Terapan untuk Teknik

23 Sebelumnya, telah diketahui bahwa bentuk aljabar (a + b)2 dapat diuraikan menjadi a2 + 2ab + b2. Jika koefisien-koefisiennya dibandingkan dengan baris ketiga pola segitiga Pascal, hasilnya yaitu 1, 2, 1. Ini berarti, bentuk aljabar (a + b)2 mengikuti pola segitiga Pascal. Sekarang, perhatikan variabel pada bentuk a2 + 2ab + b2. Terlihat bahwa, semakin ke kanan, pangkat a semakin berkurang (a2 kemudian a). Namun sebaliknya, semakin ke kanan pangkat b semakin bertambah (b kemudian b2). Jadi, dengan menggunakan pola segitiga Pascal dan aturan perpangkatan variabel, bentuk-bentuk perpangkatan lainnya dapat dituliskan sebagai berikut. (a + b)3 = 1a3 + 3a2b + 3ab2 + 1b3 (a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4 (a + b)5 = 1a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + 1b5 dan seterusnya. Perpangkatan bentuk aljabar (a – b)n dengan n bilangan asli juga mengikuti pola segitiga Pascal. Akan tetapi, tanda setiap koefisiennya selalu berganti dari (+) ke (–), begitu seterusnya. Contoh a. (x + 5)2 = x2 + 2(x)(5) + 52 = x2 + 10x + 25 b. (2x + 3)3 = (2x)3 + 3(2x)2(3) + 3(2x)(3)2 + 33 = 8x3 + 36x2 + 54x + 27 c. (x – 2)4 = x4 – 4 (x)3(2) + 6(x)2(2)2 – 4(x)(2)3 + 24 = x4 – 8x3 + 24x2 – 32x + 16

RkJQdWJsaXNoZXIy MTM3NDc5MQ==